Β' ΟΜΑΛΑΣ

15. Να βρείτε την τιμή της παράστασης
$$A = \frac{\left(xy^{-2}\right)^3 \cdot \left(x^2y\right)^{-1}}{\left(y^{-1}\right)^7 : (-y)}$$

16. Να βρείτε την τιμή της παράστασης
$$A = \left[\left(x^{-1} y \right)^2 : \left(x^7 y^3 \right)^{-1} \right]^2$$
 για $x = -1.25$ και $y = 0.8$.

για x = 2019 και $y = -\frac{1}{2019}$.

 $\alpha \cdot 2^7 \cdot 8^5$

 $\delta. \frac{5^{17}}{625}$

 $\alpha = \frac{8^5 \cdot 9^6}{6^{13}}$

$$(R^{-3})^2$$

$$\alpha. \quad A = \frac{\left((2^{-3})^4 \right)^x \cdot (\beta^{-3})^2}{(4^y \cdot \alpha)^6}$$

Να υπολογίσετε τις τιμές των παραστάσεων:

3.000 · 0,0005

 $8^3 \cdot 0.5^9$

 α . $17 \cdot 8^4 \cdot 5^{12}$

α.
$$\frac{8^5 \cdot 9^6}{6^{13}}$$
 β. $\frac{4^5 \cdot 49^2}{14^5}$ **γ.** $\frac{12^{10}}{16^5 \cdot 8}$
20. Αν ν φυσικός αριθμός, να δείξετε ότι ο αριθμός $5^{v} - 2 \cdot 5^{v+1} + 5^{v+2}$

B. $4^3 \cdot 5^6$

£ 210 · 2 55

B. $4^5 \cdot 32^3$

 $\epsilon. \frac{2^{53}}{64}$

β. B = $(16^{-1} \cdot \alpha^{-2})^x \cdot \left(-\frac{1}{4}\right)^{2y} \cdot \left(-\frac{\alpha}{8^{x-1}}\right)^2$

 $y. 9^5 \cdot 27^3$

 $στ. \frac{81^5}{27^3}$

 $\gamma \cdot \frac{12^{10}}{16^5 \cdot 81^3}$

 $\gamma \cdot 25^4 \cdot 16^2$

22. Να βρείτε το πλήθος των ψηφίων των αριθμών:
 α.
$$17 \cdot 8^4 \cdot 5^{12}$$
 β. $\frac{27^9 \cdot 8^{11} \cdot 50^4}{6^{27}}$

23. Αν ισχύει
$$\frac{55^{v} \cdot 3^{2v}}{33^{v}} = 225$$
, να βρείτε:

3. Αν ισχύει
$$\frac{33^{4}}{33^{4}}$$
 = 225 , να βρείτε:

- α. την τιμή του ν,
- το πλήθος των ψηφίων του αριθμού $\alpha = 32^{15} \cdot 25^{18}$, όταν αυτός γραφεί στη δεκαδική αναπαράστασή του.

ΑΣΚΗΣΕΙΣ

Α΄ ΟΜΑΛΑΣ

Υπολογισμός παραστάσεων

1. Να βρείτε την τιμή των παραστάσεων:

$$\alpha. \quad 3^2 + 5 \cdot 2^3 - 1^{10}$$

2.

3.

4.

α.
$$3^2 + 5 \cdot 2^3 - 1^{10}$$

β. $2^4 - 2 \cdot 3^3 + 13^0$
γ. $3^4 - 2^5 - 5^3$
δ. $4^3 - 12^2 + 13^2$

$$\alpha. \quad (-5)^2 + (-2)^3 - (-1)^4$$

$$\gamma$$
. $(-17)^0 - 9^2 - (-2)^5$

$$\mathbf{\epsilon}$$
: $2^{-1} - (-4)^{-2} + (-2)^3$

$$-2)^{3}$$

$$-2)^{3}$$

Να βρείτε την τιμή της παράστασης
$$A = 2x^3 - 3x^2 - x + 1$$
 , για:

$$\beta. \quad x = -2$$

$$x = -2$$

$$x = -2$$

$$X = -2$$

An
$$\alpha=2$$
 , $\beta=-3$ kai $\gamma=-1$, na upologisete tic parastáseic:

B. $(-1)^5 - (-7)^2 - (-3)^3$

 $\sigma \tau$. $15 - 5 \cdot 3^2 - 17 \cdot (1 - 9^0)$

 δ . $(-4)^3 - 3^4 - (-2)^4$

 $\beta. \quad B = 3\alpha^2 - 2\beta\gamma^4 - \beta^4$

$$\gamma$$
. $\Gamma = (\alpha + \beta)^5 - (\beta - \gamma)^\beta$

$$\delta. \quad \Delta = \beta^2 - 4\alpha\gamma$$

Ιδιότητες δυνάμεων

5. Να κάνετε τις πράξεις:

 $\alpha. \quad A = \alpha^5 - \beta^3 - \gamma^7$

$$\frac{x^2 \cdot x^3}{x^4}$$

$$\beta$$
. $(2x)^3 \cdot \left(\frac{x}{2}\right)^2$

$$\left(\frac{x}{2}\right)^2$$

$$\gamma \cdot \frac{(x^2)^3}{x^5}$$

$$\frac{7^3 \cdot 7^4}{7^5}$$

 α . x = -1

$$\mathbf{\epsilon.} \ \frac{(5^2)^{-3} \cdot 5^{10}}{5}$$

στ.
$$\left(\frac{3}{5}\right)^{-2} \cdot \frac{3^5}{5^2}$$

6. Να κάνετε τις πράξεις:

$$\alpha. \quad (-2)^{16} \cdot 2^{-13} + (-3)^7 \cdot 3^{-5}$$

$$\beta. \frac{5^{7} \cdot (-5)^{4}}{(-5)^{9}}$$

$$\gamma$$
. $((-2)^3)^4 \cdot (2^{-5})^3$ δ . $\frac{((-5)^{-3})^2}{(5^{-4})^2}$

α.
$$9x^2$$
 β. $-8x^3$ γ. $25x^4$ δ. $121x^2$

10. Να κάνετε τις πράξεις:
α. $x^2(x^3+2)$ β. $x(2x^3-1)$ γ. $3x(2x-5)$ δ. $5x^2-x(3x-2)$ ε. $x^2-2x^2(1-3x)$ στ. $x^3-3x(x^2-3x-1)$

11. Να κάνετε τις πράξεις:
α. $(x^2+1)(x^3-2)-x^5$ β. $(2x-1)(3x-2)+5x$ γ. $6x^2-(3x-1)(2x-5)$ δ. $3x^3-x(3x-1)(x-2)$

12. Να υπολογίσετε την τιμή των παραστάσεων:
α. $A=5x^2-3x-1$, για $x=\left(\frac{5}{4}\right)^{-1}$ β. $B=-2x^3-2x^2+2x-1$, για $x=-\frac{1}{2}$

13. Δίνεται η παράσταση $A=1-3x(2x-1)-(x-1)(2x^2-3)$.
α. Να δείξετε ότι $A=-2x^3-4x^2+6x-2$.
β. Να βρείτε την αριθμητική τιμή της παράστασης A , για $x=\left(-\frac{1}{2}\right)^{-1}$.

14. Να βρείτε τη διακρίνουσα A των τριωνύμων:
α. $2x^2+3x-1$ β. $\frac{1}{2}x^2-3x-1$

B. $x^2(-2x)-3x(-2x^2)$

 β . $(5x^3)^2 - (-2x^2)^3 - 4\left(\frac{x^3}{2}\right)^2$

 δ . $(\lambda - 1)x^2 - 2\lambda x - 2\lambda + 1$. $\lambda \neq 1$

 $\delta \cdot \left(-\frac{3}{2}xy^3 \cdot \left(-\frac{4}{9}x^2y\right)\right)$

Να κάνετε τις πράξεις:

 γ . $\alpha\beta^2(-2\alpha^3\beta)$

8.

9.

 α . $2x \cdot (-3x) - x(-5x)$

Να κάνετε τις πράξεις:

 $x^2 - \lambda x + \lambda - 1$

 $(3x)^2 + (2x)^3 - (-5x)^2 + (-3x)^3$

Να γράψετε ως μία δύναμη τις παραστάσεις: