Ενημερώθηκε στις 4 Αυγούστου, 2020
Δίας
Άποψη του Δία σε φυσικό χρώμα τον Απρίλιο του 2014 [1]
|
|||||||||||||||
Τροχιακά χαρακτηριστικά[5] | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Εποχή J2000 | |||||||||||||||
Αφήλιο | 5.45492 AU (816.04 Gm) | ||||||||||||||
Περιήλιο | 4.95029 AU (740.55 Gm) | ||||||||||||||
Ημιάξονας τροχιάς
|
5.20260 AU (778.299 Gm) | ||||||||||||||
Εκκεντρότητα | 0.048498 | ||||||||||||||
|
|||||||||||||||
Συνοδική περίοδος
|
398.88 ημέρες[3] | ||||||||||||||
Μέση τροχιακή ταχύτητα
|
13.07 km/s[3] | ||||||||||||||
20.020° | |||||||||||||||
Κλίση |
|
||||||||||||||
100.464° | |||||||||||||||
273.867° | |||||||||||||||
Γνωστοί δορυφόροι | 79 (το 2018) | ||||||||||||||
Φυσικά Χαρακτηριστικά | |||||||||||||||
Μέση ακτίνα
|
69911±6 km [6] | ||||||||||||||
Ισημερινή ακτίνα
|
|||||||||||||||
Πολική ακτίνα
|
|||||||||||||||
Πεπλάτυνση | 0.06487±0.00015 | ||||||||||||||
Έκταση επιφάνειας | |||||||||||||||
Όγκος |
|
||||||||||||||
Μάζα | |||||||||||||||
Μέση πυκνότητα
|
1.326 g/cm3[3] | ||||||||||||||
Βαρύτητα επιφάνειας
|
24.79 m/s2[3] 2.528 g |
||||||||||||||
Συντελεστής ροπής αδράνειας
|
0.254[12] (εκτίμηση) | ||||||||||||||
59.5 km/s[3] | |||||||||||||||
Αστρονομική περίοδος περιστροφής
|
9.925 h[13] (9 h 55 m 30 s) | ||||||||||||||
Ισημερινή ταχύτητα περιστροφής
|
12.6 km/s Error in {{val}}: first argument is not a valid number or requires too much precision to display. |
||||||||||||||
Κλίση άξονα
|
3.13° (to orbit)[3] | ||||||||||||||
Ορθή αναφορά βορείου πόλου
|
268.057° 17h 52m 14s[6] |
||||||||||||||
Απόκλιση βορείου πόλου
|
64.496°[6] | ||||||||||||||
Λευκαύγεια | 0.343 (Bond) 0.52 (γεωμ.)[3] |
||||||||||||||
|
|||||||||||||||
Error in {{val}}: first argument is not a valid number or requires too much precision to display. to Error in {{val}}: first argument is not a valid number or requires too much precision to display.[3] | |||||||||||||||
29.8″ to 50.1″[3] | |||||||||||||||
Ατμόσφαιρα[3] | |||||||||||||||
Επιφανειακή πίεση
|
20–200 kPa[14] (επίπεδο νεφών) | ||||||||||||||
27 km | |||||||||||||||
Σύνθεση ανά όγκο | κατά όγκο:
Πάγοι:
|
||||||||||||||
O Δίας είναι ο μεγαλύτερος πλανήτης του Ηλιακού Συστήματος σε διαστάσεις και μάζα. Είναι ο πέμπτος κατά σειρά πλανήτης ξεκινώντας από τον Ήλιο. Στην Αστρονομία έχει το σύμβολο. Είναι ένας γίγαντας αερίων με μάζα λίγο μικρότερη από το ένα χιλιοστό της ηλιακής, αλλά δυόμισι φορές μεγαλύτερη του αθροίσματος της μάζας των υπόλοιπων πλανητών του ηλιακού συστήματος. Ο Δίας, μαζί με τον Κρόνο, τον Ουρανό και τον Ποσειδώνα, αναφέρονται ως αέριοι γίγαντες.
Ο πλανήτης ήταν γνωστός από τους αστρονόμους της αρχαιότητας και συνδέθηκε με τη μυθολογία και τις θρησκευτικές πεποιθήσεις πολλών πολιτισμών. Οι Έλληνες και αργότερα οι Ρωμαίοι ονόμασαν τον πλανήτη από τον ελληνικό θεό Δία (Jupiter). Όταν φαίνεται από την Γη, ο Δίας μπορεί να φτάσει σε φαινόμενο μέγεθος -2,95, καθιστώντας τον κατά μέσο όρο, το τρίτο φωτεινότερο αντικείμενο στον ουρανό τη νύχτα μετά από τη Σελήνη και την Αφροδίτη. (Ο Άρης μπορεί να ταιριάξει σε σύντομα χρονικά διαστήματα τη φωτεινότητα του Δία σε συγκεκριμένα σημεία της τροχιάς του.)
Ο Δίας αποτελείται κυρίως από υδρογόνο, με το ένα τέταρτο της μάζας να είναι ήλιο. Μπορεί επίσης να έχει βραχώδη πυρήνα που αποτελείται από βαρύτερα στοιχεία. Λόγω της ταχείας περιστροφής του, το σχήμα του Δία είναι αυτό ενός πεπλατυσμένου σφαιροειδούς (έχει μια μικρή, αλλά σημαντική διόγκωση γύρω από τον ισημερινό). Η εξωτερική ατμόσφαιρα είναι εμφανώς χωρισμένη σε διάφορες ζώνες σε διάφορα γεωγραφικά πλάτη, με αποτέλεσμα αναταραχή και καταιγίδες κατά μήκος των ορίων αλληλεπίδρασής τους. Ένα σημαντικό αποτέλεσμα είναι η Μεγάλη Ερυθρά Κηλίδα, μια τεράστια καταιγίδα που είναι γνωστό ότι υπήρχε τουλάχιστον από τον 17ο αιώνα, οπότε και παρατηρήθηκε για πρώτη φορά με τηλεσκόπιο. Γύρω από τον πλανήτη είναι ένα αχνό πλανητικό σύστημα δακτυλίων και μια ισχυρή μαγνητόσφαιρα. Περιβάλλεται επίσης από τουλάχιστον 79 δορυφόρους, συμπεριλαμβανομένων των τεσσάρων μεγάλων Γαλιλαϊκών δορυφόρων, όπως ονομάζονται τα φεγγάρια που ανακαλύφθηκαν από τον Γαλιλαίο το 1610. Ο Γανυμήδης, ο μεγαλύτερος από αυτά τα φεγγάρια, έχει διάμετρο μεγαλύτερη από εκείνη του πλανήτη Ερμή.
Δομή
Ο Δίας είναι ένας γίγαντας αερίων. Είναι ο μεγαλύτερος πλανήτης του ηλιακού συστήματος. Είναι τόσο μεγάλος που θα μπορούσε να περιλάβει στο εσωτερικό του όλους τους άλλους πλανήτες του Ηλιακού Συστήματος. Η μάζα του είναι 318 φορές μεγαλύτερη από τη μάζα της Γης, και 2,5 φορές μεγαλύτερη του συνόλου των πλανητών και δορυφόρων. Ο όγκος του είναι 1.321 φορές μεγαλύτερος από τον όγκο της Γης. Παρά ταύτα η πυκνότητά του είναι μόλις 1,33 έναντι της πυκνότητας της Γης που είναι 5,52 και κοντινή στην πυκνότητα του Ήλιου(1,4), λαμβάνοντας ως μονάδα την πυκνότητα του ύδατος. Η μέση διάμετρός του είναι 142.000 χλμ. Η ένταση του πεδίου βαρύτητας υπολογίζεται 2,5 φορές μεγαλύτερη της έντασης της Γης. Δέχεται δε από τον Ήλιο ποσότητα φωτός και θερμότητα ίση προς το 1/25 εκείνης που φθάνει στη Γη.
Σύνθεση
Η ανώτερη ατμόσφαιρα του Δία αποτελείται από περίπου 88-92% υδρογόνο και το ήλιο αποτελεί 8-12% κατ 'όγκο τοις εκατό ή κλάσμα των μορίων του αερίου. Δεδομένου ότι ένα άτομο ηλίου έχει περίπου τέσσερις φορές μεγαλύτερη μάζα απ'ότι ένα άτομο υδρογόνου, η σύσταση αλλάζει όταν περιγράφεται ως αναλογία της μάζας που συνεισφέρουν τα διαφορετικά άτομα. Έτσι, η ατμόσφαιρα αποτελείται περίπου από 75% υδρογόνο και 24% ήλιο κατά μάζα, με το υπόλοιπο ένα τοις εκατό της μάζας να αποτελείται από άλλα στοιχεία. Το εσωτερικό περιέχει υλικά πυκνότερα έτσι ώστε η κατανομή να είναι περίπου 71% υδρογόνο, 24% ήλιο, και 5% άλλα στοιχεία κατά μάζα. Η ατμόσφαιρα περιέχει ίχνη μεθανίου, υδρατμών, αμμωνία, και ενώσεις με βάση το πυρίτιο. Υπάρχουν επίσης ίχνη από άνθρακα, αιθάνιο, υδρόθειο, νέον, οξυγόνο, φωσφίνη και θείο. Το εξωτερικό στρώμα της ατμόσφαιρας περιέχει κατεψυγμένους κρυστάλλους αμμωνίας.[15][16] Με υπέρυθρες και υπεριώδεις μετρήσεις, ίχνη βενζολίου και άλλων υδρογονανθράκων έχουν επίσης βρεθεί.[17]
Οι ατμοσφαιρικές αναλογίες υδρογόνου και ήλιου είναι πολύ κοντά στη θεωρητική σύνθεση του αρχέγονου ηλιακού νεφελώματος. Ωστόσο, το νέον στην ανώτερη ατμόσφαιρα αποτελεί μόνο τα 20 μέρη ανά εκατομμύριο κατά μάζα, η οποία είναι δέκα φορές μικρότερη από την αφθονία αυτού του στοιχείου στον Ήλιο.[18] Το ήλιο είναι επίσης εξαντλημένο, αν και είναι μόνο το 80% περίπου της σύνθεσης ηλίου του Ήλιου. Αυτή η εξάντληση μπορεί να είναι αποτέλεσμα της καθίζησης των στοιχείων αυτών στο εσωτερικό του πλανήτη.[19] Η αφθονία των βαρύτερων αδρανών αερίων στην ατμόσφαιρα του Δία είναι περίπου δύο έως τρεις φορές μεγαλύτερη από του Ήλιου.
Με βάση την φασματοσκοπία, ο Κρόνος θεωρείται ότι έχει παρόμοια σύνθεση με τον Δία, αλλά οι άλλοι γίγαντες αερίου, ο Ουρανός και ο Ποσειδώνας έχουν σχετικά πολύ λιγότερο υδρογόνο και ήλιο.[20] Ωστόσο, λόγω της έλλειψης εισόδου διαστημοπλοίων στην ατμόσφαιρα, ώστε να έχουμε μετρήσεις υψηλής ποιότητας, πιθανότατα τα βαρύτερα στοιχεία δεν είναι σε αφθονία στους εξωτερικούς πλανήτες πέρα από τον Δία.
Μάζα
Ο Δίας έχει μάζα 2,5 φορές όσο η μάζα όλων των άλλων πλανητών του ηλιακού συστήματος μαζί - ως μέγεθος μάζας είναι τόσο μεγάλο, ώστε το βαρύκεντρο του συστήματος Δία - Ήλιου βρίσκεται επάνω από την επιφάνεια του Ήλιου σε απόσταση 1,068 ηλιακές ακτίνες από το κέντρο του Ήλιου. Αν και αυτός ο πλανήτης κάνει τη Γη να μοιάζει με νάνο, με διάμετρο 11 φορές μεγαλύτερη, είναι πολύ λιγότερο πυκνός. Ο όγκος του Δία είναι ίσος με 1.321 το γήινο, αλλά ο πλανήτης είναι μόνο 318 φορές βαρύτερος από τη Γη.[3][21] Ο Δίας έχει ακτίνα ίση με 0,10 φορές την ακτίνα του Ήλιου,[22] και έχει μάζα 0.001 φορές τη μάζα του ήλιου, κάνοντας τους να έχουν περίπου ίση πυκνότητα.[23] Η "μάζα του Δία» (MJ ή MJup) χρησιμοποιείται συχνά ως μονάδα για την περιγραφή μάζας των άλλων αντικειμένων, ιδιαίτερα για εξωηλιακούς πλανήτες και καφέ νάνους. Έτσι, για παράδειγμα, η μάζα του εξωηλιακού πλανήτη HD 209458 b είναι 0,69 MJ, ενώ ο COROT-7b έχει μάζα 0,015 MJ.[24]
Εσωτερική δομή
Ο Δίας θεωρείται ότι αποτελείται από ένα πυκνό πυρήνα με ένα μείγμα στοιχείων, ένα στρώμα υγρού μεταλλικού υδρογόνου με λίγο ήλιο που τον περιβάλλει, και ένα εξωτερικό στρώμα κυρίως από μοριακό υδρογόνο. Πέραν αυτής της βασικής διάρθρωσης, υπάρχει ακόμα μεγάλη αβεβαιότητα. Ο πυρήνας συχνά περιγράφεται ως βραχώδης, αλλά κάθε λεπτομέρεια στη σύνθεση του είναι άγνωστη, όπως και οι ιδιότητες των υλικών σε θερμοκρασίες και πιέσεις σε τέτοια βάθη. Το 1997, είχε προταθεί από βαρυτικές μετρήσεις, ότι ο πυρήνας του Δία έχει 12 έως 45 φορές τη μάζα της Γης, ή περίπου το 3% -15% της συνολικής Μάζας του Δία.[25] Η παρουσία του πυρήνα κατά τη διάρκεια τουλάχιστον ενός μέρους της ιστορίας του Δία προτείνεται από τα μοντέλα του πλανητικού σχηματισμού που αφορούν την αρχική σύσταση ενός βραχώδους ή παγωμένου πυρήνα που είναι αρκετά ογκώδης για να συλλέξει μέρος του όγκου από υδρογόνο και ήλιο από το πρωτοηλιακό νεφέλωμα. Αν υποθέσουμε ότι υπήρχε, μπορεί να έχει συρρικνωθεί καθώς ρεύματα μεταφοράς θερμού υγρού μεταλλικού υδρογόνου αναμίχθηκαν με το λιωμένο πυρήνα και μετέφεραν το περιεχόμενό του σε υψηλότερα επίπεδα στο πλανητικό εσωτερικό. Ο πυρήνας μπορεί τώρα να απουσιάζει εντελώς, καθώς οι μετρήσεις δεν είναι ακόμα αρκετά ακριβείς ώστε να αποκλειστεί η δυνατότητα αυτή.[26]
Ατμόσφαιρα
Η ατμόσφαιρα του Δία είναι η μεγαλύτερη στο ηλιακό σύστημα, καθώς εκτείνεται σε πλάτος μεγαλύτερο των 5.000 χιλιομέτρων.[27][28] Επειδή ο Δίας δεν έχει επιφάνεια, η βάση της ατμόσφαιρας θεωρείται το σημείο στο οποίο η ατμοσφαιρική πίεση ισούται με 10 bar.[27]
Ατμοσφαιρικά χαρακτηριστικά
Με το τηλεσκόπιο δεν φαίνεται η επιφάνεια του πλανήτη, αλλά η πυκνή ατμόσφαιρα που τον περιβάλλει και η οποία παρουσιάζει πλατιές σκοτεινές ταινίες, παράλληλες προς τον ισημερινό του πλανήτη, που διαχωρίζονται από φωτεινές ζώνες. Η φωτεινότητα, το πλάτος και η θέση των ζωνών αλλάζουν συνέχεια όψη και εύρος, στο διάστημα ενός έτους. Η εναλλαγή σκοτεινών και φωτεινών ζωνών αντιπροσωπεύει περιοχές όπου αέρια ανεβαίνουν προς τα πάνω στην ατμόσφαιρα του Δία και άλλες όπου κατεβαίνουν προς τα κάτω. Η ατμόσφαιρα του Δία όπως και των άλλων τριών γιγάντων αερίων, περιέχει υδρογόνο περίπου 78%, ήλιο 11%, με το υπόλοιπο 1% να αποτελείται από αμμωνία, μεθάνιο, νερό και άλλες ενώσεις όπως το αιθάνιο, το ακετυλένιο και το υδροκυάνιο. Η θερμοκρασία στην κορυφή των νεφών είναι -130 έως -140 βαθμοί Κελσίου. Σε αυτές τις θερμοκρασίες το νερό και η αμμωνία βρίσκονται σε μορφή πάγου. Χαμηλότερα όμως τόσο η πίεση όσο και θερμοκρασία αυξάνονται.
Η Μεγάλη ερυθρά κηλίδα και άλλες καταιγίδες
Το εντυπωσιακότερο χαρακτηριστικό της ατμόσφαιρας του Δία είναι η Μεγάλη Ερυθρά (κόκκινη) Κηλίδα, που έχει διάμετρο τετραπλάσια της Γης. Είναι ένας μόνιμος αντικυκλώνας, που βρίσκεται 22 μοίρες νοτίως του ισημερινού. Καλύπτει περίπου το 1% της επιφάνειας του Δία, και φαίνεται να μετατοπίζεται αργά. Το χρώμα της και ο χρόνος περιστροφής της αλλάζουν με την πάροδο των χρόνων. Υποστηρίζεται πως η Μεγάλη Ερυθρά Κηλίδα, είναι μια τεράστια καταιγίδα, ένας αντικυκλώνας, που διαρκεί 300 χρόνια μέχρι σήμερα, ή νησίδα ατμοσφαιρικής ύλης μεταξύ υγρής και αεριώδους κατάστασης. Το 2005 μια ακόμα μεγάλου μεγέθους κηλίδα, η Μικρή κόκκινη κηλίδα έκανε την εμφάνισή της κοντά στη μεγάλη. Παρόμοιοι σχηματισμοί έχουν παρατηρηθεί και στους άλλους αέριους γίγαντες πλανήτες, και υπάρχουν σε μεγάλους αριθμούς και στην ατμόσφαιρα του Δία. Ωστόσο, δεν έχουν το μέγεθος και τη διάρκεια της μεγάλης κόκκινης κηλίδας.
Δακτύλιοι
Ο Δίας έχει ένα αμυδρό πλανητικό σύστημα δακτυλίων που αποτελείται από τρία κύρια τμήματα: τον εσωτερικό δακτύλιο σωματιδίων, γνωστό ως φωτοστέφανο, ένα σχετικά φωτεινό κύριο δακτύλιο, και ένα εξωτερικό αραχνοΰφαντο δακτύλιο.[29] Αυτοί οι δακτύλιοι φαίνεται να έχουν προέλθει από σκόνη, αντί πάγο όπως συμβαίνει με τους δακτυλίους του Κρόνου. Ο κύριος δακτύλιος είναι πιθανώς κατασκευασμένος από υλικό που εκτινάσσεται από τους δορυφόρους Αδράστεια και Μήτις. Το υλικό που κανονικά θα επέστρεφε πίσω στο δορυφόρο τραβιέται σε τροχιά γύρω από το Δία λόγω της ισχυρής βαρυτικής επιρροής του. Η τροχιά του υλικού στρέφει προς τον Δία και νέο υλικό προστίθεται από επόμενες συγκρούσεις.[30] Με παρόμοιο τρόπο, οι δορυφόροι Θήβη και Αμάλθεια παράγουν ίσως τις δύο ξεχωριστές συνιστώσες του σκονισμένου αραχνοΰφαντου δακτυλίου.[30] Υπάρχουν επίσης αποδεικτικά στοιχεία ενός βραχώδη δακτυλίου κατά μήκος της τροχιάς της Αμάλθειας, ο οποίος μπορεί να αποτελείται από συντρίμμια από το δορυφόρο.[31]
Μαγνητικό πεδίο
Ο Δίας έχει ισχυρότατο μαγνητικό δίπολο, 14 φορές ισχυρότερο από εκείνο της Γης, με ισχύ 4,2 gauss στον ισημερινό και 10 με 14 στους πόλους.[32] Κινήσεις αγώγιμων στοιχείων μέσα στο μεταλλικό υδρογόνο σχηματίζουν ένα μαγνητικό πεδίο, το οποίο παγιδεύει τα ιονισμένα σωματίδια του ηλιακού ανέμου. Η μαγνητόσφαιρά του, δηλαδή το μαγνητισμένο περιβάλλον του, σχηματίζεται γύρω του καθώς το μαγνητικό του πεδίο αλληλεπιδρά με τον ηλιακό άνεμο, αυτό το ταχύτατο, μαγνητισμένο και ιονισμένο αέριο που εκπέμπει συνεχώς ο Ήλιος στο διαπλανητικό χώρο με τεράστια ταχύτητα.
Διπολικά πεδία και μαγνητόσφαιρες έχουν η Γη, ο Κρόνος και οι άλλοι γίγαντες πλανήτες. Η μαγνητόσφαιρα του Δία μοιάζει με γιγάντια σφαιρική σταγόνα προς τον Ήλιο με ακτίνα 100 έως 150 ακτίνες του Δία, και ατρακτοειδής προς τη σκοτεινή πλευρά που εκτείνεται ίσως και πέρα από μία αστρονομική μονάδα. Ο Δίας έχει έντονες ζώνες ακτινοβολίας (ζώνες Van Allen) και εμφανίζεται πολικό σέλας όπως στη Γη. Η έκταση της μαγνητόσφαιρας αυξομειώνεται, καθώς μεταβάλλεται η πίεση του ηλιακού ανέμου και κάποια σωμάτια (ενεργητικά ηλεκτρόνια) που επιταχύνονται από τη μαγνητόσφαιρα φθάνουν έως τη Γη, όπου τα παρατηρούν τα διαστημόπλοια όταν υπάρχει μαγνητική σύνδεση με τον Δία μέσω του διαπλανητικού μαγνητικού πεδίου κάθε δεκατρείς μήνες.
Τροχιά
Η απόστασή του από τη Γη κυμαίνεται ανάμεσα στα 591.000.000 χλμ και 965.000.000 χλμ. (περίπου ± 5,2 α.μ.). Περιστρέφεται πάρα πολύ γρήγορα γύρω από τον άξονά του, περίπου σε 10 ώρες, πιο γρήγορα από όλους τους πλανήτες. Για την ακρίβεια περιστρέφεται σε 9 ώρες και 51 λεπτά. Με αυτό το ρυθμό της περιστροφής, ο Δίας, που είναι φτιαγμένος κατά κύριο λόγο από αέριο υδρογόνο παρουσιάζει πλάτυνση ίση προς 1/15. Ο χρόνος που χρειάζεται για μια περιφορά γύρω από τον Ήλιο είναι περίπου 12 γήινα χρόνια (11 έτη και 315 ημέρες Γης).
Δορυφόροι
Έχει επιβεβαιωθεί η ύπαρξη 79[33] δορυφόρων διαφόρων μεγεθών σε τροχιά γύρω από τον Δία από τους οποίους οι τέσσερις Γανυμήδης, Καλλιστώ, Ιώ και Ευρώπη ανακαλύφθηκαν από τον Γαλιλαίο όταν παρατήρησε τον ουρανό με το τηλεσκόπιό του το 1610, είναι πολύ μεγάλοι με διάμετρο από 4.980 έως 2.880 χλμ. Οι δύο πρώτοι είναι μεγαλύτεροι της Σελήνης. Αυτοί οι τέσσερις φαίνονται με απλά κιάλια κατά τη διεύθυνση του ισημερινού του πλανήτη.
Κατά την κίνησή τους περί το Δία άλλοτε υφίστανται "εκλείψεις", άλλοτε "διαβάσεις" (προ του δίσκου του Δία) και άλλοτε "επιπροσθήσεις".
Ονόματα μερικών από τους υπόλοιπους δορυφόρους είναι: Αμάλθεια, Ιμαλία, Ελάρα, Πασιφάη, Σινώπη, Λυσιθέα, Κάρμη, Ανάγκη, Λήδα, Θήβη, Αδράστεια, Μήτις, Καλλιρρόη, Θεμιστώ, Μεγακλείτη, Ταϋγέτη, Χαλδήνη, Αρπαλύκη, Καλύκη, Ιοκάστη, Ερινόμη, Ισονόη, Πραξιδίκη, Αυτονόη, Θυώνη, Ερμίππη, Αίτνη, Ευρυδόμη, Ευάνθη, Ευπορία, Ορθωσία, Σπονδή, Καλή, Πασιθέα, Ηγεμόνη, Μνήμη, Αοιδή, Θελξινόη, Αρχή, Καλλιχόρη, Ελίκη, Καρπώ, Ευκελάδη, Κυλλήνη, Κόρη.
Ιστορικά παραλειπόμενα
Στις 13 Ιανουαρίου, του 1610 όταν ανακαλύφθηκε και ο τέταρτος δορυφόρος του Δία, ο Γαλιλαίος ονόμασε αυτούς «Πλανήτες των Μεδίκων».
Ο Γερμανός αστρονόμος Μάγερ Σίμων ή Μάριος ισχυριζόταν πως εκείνος είναι ο πρώτος που παρατήρησε τους εν λόγω δορυφόρους την 27η Δεκεμβρίου του 1609 και ονόμασε, εκ λάθους του, αυτούς «Αστέρες του Βρανδεμβούργου» και ακολούθως έδωσε σε κάθε ένα ιδιαίτερο όνομα από την ελληνική μυθολογία καλώντας Γανυμήδη τον ένα εξ αυτών. Παρά ταύτα επεκράτησε ο Γαλιλαίος.
Με την ανακάλυψη αυτών των δορυφόρων αποδείχθηκε για πρώτη φορά ότι η Γη δεν είναι το κέντρο του Σύμπαντος, όπως πιστευόταν έως τότε, αφού υπήρχαν τέσσερα, έστω μικρά, ουράνια σώματα που περιφέρονταν γύρω από τον Δία. Αυτό οδήγησε στην εγκαθίδρυση και αποδοχή του ηλιοκεντρικού συστήματος που πρωτοδιατύπωσε ο Αρίσταρχος ο Σάμιος και επανέφερε ο Κοπέρνικος λίγο πριν το Γαλιλαίο.
Οι εκλείψεις της Ιούς χρησίμευσαν στον Ραίμερ (Roemer) για τον προσδιορισμό της ταχύτητας του φωτός.
Πιθανότητα ζωής
Κανένας λόγος περί ζωής, ανάλογης με τη γήινη, δεν είναι δυνατόν να προταθεί προκειμένου για τον πλανήτη Δία. Το 1976 ο Αμερικανός φυσικός Καρλ Σαγκάν πρότεινε ότι μορφές ζωής με οργανική χημεία που βασίζονται στην υγρή αμμωνία (και όχι στο νερό όπως γίνεται στη Γη) θα μπορούσαν να επιβιώσουν στα ανώτερα στρώματα της ατμόσφαιρας του Δία. Ο Σαγκάν βάσισε την άποψη του στην οικολογία των γήινων θαλασσών όπου υπάρχει φυτοπλαγκτόν στα ανώτερα στρώματα, πιο χαμηλά ψάρια που τρέφονται από το πλαγκτόν και στα χαμηλότερα βάθη κυνηγοί που τρέφονται με τα ψάρια.
Αστρονομική ναυτιλία
Ο πλανήτης Δίας περιλαμβάνεται στους λεγόμενους ναυτιλιακούς πλανήτες, οι οποίοι λαμβάνονται υπόψη σε μετρήσεις για τις ανάγκες επίλυσης προβλημάτων προσδιορισμού γεωγραφικού στίγματος.
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Άρης (εικόνα)
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Αστεροειδής και κομήτες Άρη
Αστεροειδής
Κομήτες
- C/2013 A1 (Σάιντινγκ Σπρινγκ) (Πλησίασε τον Άρη την 19 Οκτ 2014)
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Διαβάσεις στον Άρη
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Δορυφόροι Άρη και χαρακτηριστικά
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Φυσικά χαρακτηριστικά Άρη
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Περιοχές στον Άρη
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Άρης (Στοιχεία ατμόσφαιρας)
Δημοσιεύτηκε στις 2 Αυγούστου, 2020
Ζωή στον Άρη
Ζωή στον Άρη
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
Η πιθανότητα ύπαρξης ζωής στον Άρη είναι θέμα σημαντικού ενδιαφέροντος στην αστροβιολογία λόγω της εγγύτητας και ομοιότητας του πλανήτη με τη Γη. Επί του παρόντος δεν υπάρχουν αποδείξεις για ζωή στον Άρη. Αθροιστικά στοιχεία δείχνουν ότι κατά την αρχαία περίοδο του Νώε, στην επιφάνεια του Άρη υπήρχε νερό σε υγρή μορφή και ίσως ήταν κατοικήσιμη για μικροοργανισμούς. Η κατοικησιμότητα του πλανήτη δεν συνεπάγεται απαραίτητα την παρουσία ζωής.
Τον 19ο αιώνα ξεκίνησαν επιστημονικές έρευνες για ίχνη ζωής, που συνεχίζονται με τηλεσκοπικές αναζητήσεις και διαστημικούς εξερευνητές. Ενώ οι πρώιμες μελέτες επικεντρώθηκαν στην φαινομενολογία που συνορεύει με τη φαντασία, η σύγχρονη επιστημονική έρευνα έδωσε έμφαση στην αναζήτηση νερού, σε χημικά ίχνη ζωής στο έδαφος και τα πετρώματα στην επιφάνεια του πλανήτη, και σε βιοδείκτες αερίων στην ατμόσφαιρα.[1][2]
Ο Άρης είναι ιδιαίτερου ενδιαφέροντος για τη μελέτη της προέλευσης της ζωής λόγω της ομοιότητας του με την πρώιμη Γη. Ιδιαίτερα επειδή έχει ψυχρό κλίμα και δεν διαθέτει τεκτονικές πλάκες ή μετατόπιση των ηπείρων, οπότε έχει παραμείνει αμετάβλητος από τα τέλη της Εσπερινικής περιόδου. Τουλάχιστον τα δύο-τρίτα της επιφάνειας του Άρη έχουν ηλικία πάνω από 3,5 δισεκατομμύρια έτη, και ο πλανήτης ίσως αποτελεί την καλύτερη ιστορική μαρτυρία για τις προβιοτικές συνθήκες που οδηγούν σε αβιογένεση, έστω και αν ζωή δεν υπάρχει ή δεν υπήρξε ποτέ εκεί.[3][4]
Κατόπιν της επιβεβαίωσης για ύπαρξη επιφανειακού υγρού νερού στο παρελθόν, τα ρόβερ Curiosity και Opportunity άρχισαν να ψάχνουν για ίχνη παλαιότερης ζωής, όπως παλαιά βιόσφαιρα βασισμένη σε αυτότροφους, χημειοτροφικούς, ή χημειολιθοτροφικούς μικροοργανισμούς, καθώς και για αρχαίο νερό, όπως ποταμίσια-λιμναία περιβάλλοντα (πεδία που σχετίζονται με αρχαία ποτάμια ή λίμνες) που ίσως ήταν κατοικήσιμα.[5][6][7][8] Η αναζήτηση για ίχνη κατοικησιμότητας, η ταφονομία (που σχετίζεται με απολιθώματα), και οι οργανικές ενώσεις στον Άρη αποτελούν τώρα τα κύρια αντικείμενα των NASA και ESA.
Τα ευρήματα οργανικών ενώσεων μέσα σε ιζηματογενή πετρώματα και βορίου στον Άρη είναι ενδιαφέροντος επειδή είναι πρόδρομες ουσίες για την προβιοτική χημεία. Τέτοια ευρήματα, μαζί με προηγούμενες ανακαλύψεις για την παρουσία υγρού νερού στον αρχαίο Άρη, ενισχύουν περαιτέρω την πιθανότητα πρώιμης κατοικησιμότητας του Κρατήρα Γκέιλ στον Άρη.[9][10] Σήμερα, η επιφάνεια του Άρη λούζεται με ακτινοβολία, που αντιδρά με τα υπερχλωρικά της επιφάνειας, και ίσως γίνεται τοξική για τους μικροοργανισμούς.[11][12]Συνεπώς, η κοινή συναίνεση είναι ότι αν υπάρχει —ή υπήρξε— ζωή στον Άρη, θα βρισκόταν ή θα διατηρούταν καλύτερα στο υπέδαφος, προστατευμένη από τις τρέχουσες αφιλόξενες επιφανειακές διεργασίες.
Τον Ιούνιο 2018, η NASA ανακοίνωσε την ανίχνευση εποχικών διακυμάνσεων στα επίπεδα μεθανίου στον Άρη, που ίσως προέρχεται από μικροοργανισμούς ή γεωλογικά μέσα.[13] Από τον Απρίλιο του 2018 ο Ευρωπαϊκός Τροχιακός Δορυφόρος Ιχνών Αερίων (ExoMars Trace Gas Orbiter) του προγράμματος αστροβιολογίας ExoMars παρακολουθεί το ατμοσφαιρικό μεθάνιο και το 2020 το ρόβερ ExoMars θα εξορύξει δείγματα υπεδάφους, ενώ το ρόβερ της NASA Άρης 2020 (Mars 2020) θα αποθηκεύσει δεκάδες από τα δείγματα για πιθανή μεταφορά σε Γήινα εργαστήρια περί το 2020-2030.
Πρώιμες υποθέσεις
Οι Αρειανοί πολικοί πάγoι ανακαλύφθηκαν από τα μέσα του 17ου αιώνα. Στα τέλη του 18ου αιώνα, ο Ουίλιαμ Χέρσελ απέδειξε ότι μεγαλώνουν και μικραίνουν εναλλάξ, κατά το το καλοκαίρι και το χειμώνα κάθε ημισφαιρίου. Από τα μέσα του 19ου αιώνα, οι αστρονόμοι γνώριζαν ότι ο Άρης είχε αρκετές ομοιότητες με τη Γη, όπως η χρονική διάρκεια της Αρειανής μέρας που ήταν σχεδόν ίση με τη Γήινη. Γνώριζαν επίσης ότι η αξονική κλίση ήταν παρόμοια με της Γης, δηλαδή υπάρχουν εποχές του έτους όπως και στη Γη — αλλά σχεδόν διπλάσιας διάρκειας επειδή το Αρειανό έτος διαρκεί πολύ περισσότερο. Οι παρατηρήσεις αυτές οδήγησαν στις υποθέσεις ότι τα σκοτεινότερα άλβεδο αντιστοιχούσαν στο νερό και τα φωτεινότερα στη στεριά, και τελικά ίσως να υπάρχει κάποια μορφή ζωής στον Άρη.
Το 1854, ο Γουίλιαμ Χιούελ, υπότροφος του Κολέγιου Τρίνιτυ στο Κέμπριτζ, ο οποίος διέδωσε τη λέξη επιστήμονας, διατύπωσε τη θεωρία ότι ο Άρης είχε θάλασσες, στεριά και πιθανές μορφές ζωής.[14] Στα τέλη του 19ου αιώνα αυξήθηκαν οι εικασίες για ζωή στον Άρη, κατόπιν τηλεσκοπικών παρατηρήσεων φαινομενικών Άρειανών καναλιών — που τελικά βρέθηκε ότι ήταν οπτικές ψευδαισθήσεις.Το 1895 ο Αμερικανός αστρονόμος Πέρσιβαλ Λόουελ δημοσίευσε το βιβλίο του Άρης, που ακολουθήθηκε από το ο Άρης και τα Κανάλια του το 1906,[15] προτείνοντας ότι τα κανάλια ήταν το έργο εξαφανισμένου πολιτισμού.[16] Η ιδέα ενέπνευσε το Βρετανό συγγραφέα Χ.Τζ.Γουέλς που το 1897 έγραψε το Ο Πόλεμος των Κόσμων, διηγούμενος μία εξωγήινη εισβολή από Αρειανούς που προσπαθούσαν να γλιτώσουν από την ολοκληρωτική ξήρανση του πλανήτη.
Το 1894 άρχισαν φασματοσκοπικές αναλύσεις στην Αρειανή ατμόσφαιρα, όταν ο Αμερικάνος αστρονόμος Γουίλιαμ Γουάλας Κάμπελ έδειξε ότι εκεί δεν υπάρχει νερό ούτε οξυγόνο.[17] Το 1909 με παρατηρήσεις από καλύτερα τηλεσκόπια απορρίφθηκε η υπόθεση των καναλιών.
Κατοικησιμότητα
Το περιβάλλον του Άρη διαμορφώνεται από χημικά, φυσικά, γεωλογικά και γεωγραφικά χαρακτηριστικά. Μεμονωμένες μετρήσεις των παραγόντων αυτών ίσως δεν επαρκούν για να αποφανθεί αν το περιβάλλον είναι κατοικήσιμο, αλλά το άθροισμα των μετρήσεων θα συνεισφέρει στις δυνατότητες πρόβλεψης περιοχών με μεγαλύτερη ή μικρότερη ενδεχόμενη κατοικησιμότητα [18] Οι δύο τρέχουσες οικολογικές προσεγγίσεις για την κατοικησιμότητα της Αρειανής επιφάνειας κάνουν χρήση 19 ή 20 περιβαλλοντικών παραγόντων, με έμφαση στη διαθεσιμότητα του νερού, τη θερμοκρασία, την παρουσία θρεπτικών ουσιών, μια πηγή ενέργειας, και την προστασία από την ηλιακή υπεριώδη ακτινοβολία και την γαλαξιακή κοσμική ακτινοβολία.[19][20]
Οι επιστήμονες δεν γνωρίζουν τον ελάχιστο αριθμό παραμέτρων για τον προσδιορισμό της κατοικησιμότητας, αλλά είναι βέβαιοι ότι είναι περισσότεροι από ένα - δύο από τα στοιχεία του πίνακα που ακολουθεί. Ομοίως, για κάθε ομάδα παραμέτρων πρέπει να προσδιορίζονται τα όρια. Εργαστηριακές προσομοιώσεις δείχνουν ότι με συνδυασμό πολλαπλών θανατηφόρων παραγόντων τα ποσοστά επιβίωσης κατρακυλούν γρήγορα.[21] Δεν έχουν δημοσιευθεί ακόμα πλήρεις Αρειανές προσομοιώσεις που να περιλαμβάνουν όλους τους βιοκτόνους παράγοντες συνδυασμένους.
Παράγοντες κατοικησιμότητας | |
---|---|
Νερό | · Ενεργότητα υγρού νερού (aw) · Παρελθοντικά/μελλοντικά υγρά (πάγος) αποθέματα · Αλμυρότητα, pH, και Ε0 του διαθέσιμου νερού |
Χημικό περιβάλλον | Θρεπτικά συστατικά: · C, H, N, O, P, S, απαραίτητα μέταλλα, απαραίτητα μικροθρεπτικά συστατικά · Κύκλος αζώτου · Διαθεσιμότητα/ορυκτολογία Τοξίνες και θνησιμότητα: · Βαρέα μέταλλα (π. χ., Zn, Ni, Cu, Cr, As, Cd, κ. λπ., μερικά απαραίτητα, αλλά τοξικά σε μεγάλες συγκεντρώσεις) · Παγκόσμια κατανομή οξειδωτικού εδάφους |
Μεταβολική ενέργεια |
Ηλιακή (επιφάνεια και κοντά στην επιφάνεια μόνο) Γεωχημική (υπεδάφους) · Οξειδωτικά · Αναγωγικά · Οξειδοαναγωγικές κλίσεις |
Ευνοϊκές φυσικές συνθήκες |
· Θερμοκρασία · Ακραίες ημερήσιες διακυμάνσεις της θερμοκρασίας · Χαμηλή πίεση (Υπάρχει ελάχιστο όριο πίεσης για τα επίγεια αναερόβια?) · Ισχυρή υπεριώδης μικροβιοκτόνα ακτινοβολία · Γαλαξιακή κοσμική ακτινοβολία και εκπομπές ηλιακών σωματιδίων (μακροπρόθεσμα συσσωρευμένα αποτελέσματα) · Ηλιακά UV-επαγόμενα πτητικά οξειδωτικά, π. χ., O2−, O−, H2O2, O3 · Κλίμα/μεταβλητότητα (γεωγραφία, εποχές, ημερήσιες, και τελικά αποκλίσεις) · Υπόστρωμα (διεργασίες εδάφους, μικροπεριβάλλοντα πετρωμάτων, σύσταση σκόνης, προστασία) · Υψηλές συγκεντρώσεις CO2 στην παγκόσμια ατμόσφαιρα · Μεταφορές (αιολικές, ροή υπόγειων υδάτων, επιφανειακά ύδατα, παγετώδεις) |
Παρελθόν
Πρόσφατα μοντέλα έδειξαν ότι, ακόμη και με ατμόσφαιρα πυκνού CO2, ο πρώιμος Άρης ήταν πιο κρύος από όσο ήταν ποτέ η Γη.[22] Παροδικές θερμές συνθήκες που σχετίζονταν με προσκρούσεις ή ηφαιστειακή δραστηριότητα θα ευνοούσαν το σχηματισμό των δικτύων κοιλάδων στα τέλη της περιόδου Νώε, ακόμη και αν στα μέσα της περιόδου οι παγκόσμιες συνθήκες ήταν μάλλον παγετώδεις. Οι τοπικές αυξήσεις στη θερμοκρασία του θα ήταν σποραδικές, αλλά θα υπήρχαν πολλά περιστατικά ροής νερού στην επιφάνεια του Άρη. Τα ορυκτολογικά και τα μορφολογικά στοιχεία δείχνουν υποβάθμιση της κατοικησιμότητας από τα μέσα της Εσπερινής περιόδου και μετά. Τα ακριβή αίτια δεν είναι πλήρως κατανοητά και ίσως σχετίζονται με συνδυασμό διεργασιών, όπως απώλεια πρώιμης ατμόσφαιρας, ή διάβρωση από προσκρούσεις.
Η απώλεια του Αρειανού μαγνητικού πεδίου επηρέασε έντονα τα επιφανειακά περιβάλλοντα μέσω ατμοσφαιρικής απώλειας και αυξημένης ακτινοβολίας, δηλαδή μειώθηκε η κατοικησιμότητα.[24] Ενόσω υπήρχε μαγνητικό πεδίο, η ατμόσφαιρα θα προστατευόταν από τη διάβρωση του ηλιακού ανέμου, και θα είχε διασφαλιστεί η διατήρηση πυκνής ατμόσφαιρας, που είναι απαραίτητη για την παρουσία υγρού νερού στην επιφάνεια του Άρη.[25] Η απώλεια της ατμόσφαιρας συνοδεύτηκε από πτώση στις θερμοκρασίες. Μέρος των αποθεμάτων υγρού νερού εξαχνώθηκαν και μεταφέρθηκαν στους πόλους, ενώ το υπόλοιπο παγιδεύτηκε στο μόνιμο στρώμα του πάγου.[26]
Επίγειες παρατηρήσεις και αριθμητικά μοντέλα έχουν δείξει ότι μία πρόσκρουση με σχηματισμό κρατήρα μπορεί να δημιουργήσει ένα μακροχρόνιο υδροθερμικό σύστημα εάν υπάρχει πάγος στο φλοιό της γης. Για παράδειγμα, μεγάλος κρατήρας 130 χλμ. θα μπορούσε να συντηρήσει ένα ενεργό υδροθερμικό σύστημα για έως 2 εκατομμύρια χρόνια, δηλαδή αρκετό καιρό για την ανάπτυξη μικροσκοπικής ζωής[26] αλλά όχι για σημαντική εξελικτική πορεία.[27]
Το 2013, το ρόβερ της NASA Curiosity εξέτασε δείγματα εδάφους και πετρωμάτων με τα ενσωματωμένα όργανα και λήφθηκαν πρόσθετες πληροφορίες για αρκετούς παράγοντες κατοικησιμότητας.[28] Η ομάδα του ρόβερ αναγνώρισε μερικά από τα βασικά χημικά συστατικά για τη ζωή στο χώμα, όπως θείο, άζωτο, υδρογόνο, οξυγόνο, φώσφορο και μάλλον άνθρακα, καθώς και αργιλικά ορυκτά, ενδεικτικά εξαφανισμένου αρχαίου υδάτινου περιβάλλοντος — ίσως μια λίμνη ή αρχαία κοίτη χειμάρρου — με ουδέτερη οξύτητα και μικρή αλμυρότητα. Την 9 Δεκεμβρίου 2013, η NASA ανέφερε ότι με βάση δεδομένα από τις παρατηρήσεις του Curiosity, στο Aeolis Palus του Κρατήρα Γκέηλ υπήρχε μία αρχαία λίμνη φρέσκου νερού που θα ήταν φιλόξενο περιβάλλον για την μικροβιακή ζωή.[29][30] Η επιβεβαίωση ότι υγρό νερό έρεε κάποτε στον Άρη, η ύπαρξη θρεπτικών συστατικών, και η προηγούμενη ανακάλυψη του παλαιού μαγνητικού πεδίου που προστάτευε τον πλανήτη από την κοσμική και ηλιακή ακτινοβολία,[31][32] μαζί συνεπάγονται ότι το Αρειανό περιβάλλον θα υποστήριζε τη ζωή.[33] Ωστόσο, η εκτίμηση της παρελθοντικής κατοικησιμότητας δεν αποδεικνύει ότι υπήρξε Αρειανή ζωή ποτέ. Αν υπήρξε, ήταν μάλλον μικρόβια σε υγρά ή ιζήματα, ή ελεύθερα βιοφίλμ.
Ιμπακτίτης, που διατηρεί ίχνη ζωής, ανακαλύφθηκε στον Άρη και θα μπορούσε να περιέχει πληροφορίες για αρχαία ζωή στον πλανήτη..[34]
Στις 7 Ιουνίου 2018, η NASA ανακοίνωσε ότι το ρόβερ Curiosity βρήκε οργανικά μόρια σε ιζηματογενή πετρώματα που χρονολογούνται έως τριών δισεκατομμυρίων χρόνων.[35] [36] Η ανίχνευση οργανικών μορίων σε βράχους δείχνει ότι υπήρχαν δομικά στοιχεία για τη ζωή.[37][38]
Παρόν
Θεωρητικά, αν υπάρχει (ή υπήρχε) ζωή στον Άρη τα ίχνη της θα βρίσκονταν, ή θα διατηρούνταν καλύτερα, στο υπέδαφος, προστατευμένα από τις τρέχουσες αντίξοες συνθήκες της επιφάνειας.[39] Σήμερα η ζωή στον Άρη, ή οι ενδείξεις της, θα βρίσκονταν λίγα μέτρα ή πολλά χιλιόμετρα κάτω από την επιφάνεια, ή σε υπόγεια γεωθερμικά ενεργά σημεία. Το παγετώδες στρώμα στον Άρη βρίσκεται μόνο μερικά εκατοστά υπό του εδάφους, και οι αλμυρές άλμες παραμένουν υγρές για λίγα εκατοστά βάθους. Το νερό είναι κοντά στο σημείο βρασμού ακόμη και στα βαθύτερα σημεία της λεκάνης Ελλάς και δεν παραμένει σε υγρή κατάσταση για πολύ ώρα στην επιφάνεια του Άρη, εκτός αν είναι καλυμμένο με πάγο ή κατόπιν απότομης απελευθέρωσης υπόγειου νερού.
Έως τώρα, η NASA ακολουθεί στρατηγική τύπου "ακολουθώντας το νερό" στον Άρη και δεν έχει αναζητήσει ίχνη ζωής εκεί από τον καιρό της αποστολής Viking. Από το 2017, η κοινή συναίνεση για τους αστροβιολόγους της NASA είναι ότι ίσως χρειαστεί πρόσβαση στο Αρειανό υπέδαφος για να βρεθούν τρέχοντα κατοικήσιμα περιβάλλοντα.
Λανθάνουσα υπεδάφια ζωή
Το ρόβερ Περιέργεια μέτρησε τα επίπεδα ιονίζουσας ακτινοβολίας ίσα με 76 mGy ετήσια,[40] που θα αποστείρωνε την επιφάνεια του πλανήτη. Η κατοικησιμότητά του εξαρτάται από την τροχιακή εκκεντρότητα και την κλίση του άξονά του. Βάσει εκτίμησης, αν αναπτύχθηκε ζωή σε περίοδο έως 450.000 χρόνια, τότε τα ρόβερ στον Άρη θα βρουν αδρανή αλλά βιώσιμη ζωή σε βάθος έως ενός μέτρου.[41]
Κοσμική ακτινοβολία
Το 1965, το Μάρινερ 4 ανακάλυψε ότι ο Άρης δεν είχε πλανητικό μαγνητικό πεδίο για προστασία από την επικίνδυνη κοσμική ακτινοβολία και την ηλιακή ακτινοβολία· στα τέλη της δεκαετίας 1990 παρατηρήσεις από το Mars Global Surveyor επιβεβαίωσαν την ανακάλυψη.[42] Οι επιστήμονες υποθέτουν ότι ελλείψει μαγνητικής ασπίδας ο ηλιακός άνεμος θα παρέσυρε μακριά μεγάλο μέρος από την Άρειανή ατμόσφαιρα σε περίοδο αρκετών δισ.χρόνων.[43] Ως επακόλουθο, ο πλανήτης θα ήταν ευάλωτος στη διαστημική ακτινοβολία για περίπου 4 δισεκατομμύρια χρόνια.[44]
Πρόσφατα δεδομένα in-situ από το ρόβερ Περιέργεια δείχνουν ότι η ιοντίζουσα ακτινοβολία από τις γαλαξιακές κοσμικές ακτίνες και οι εκπομπές ηλιακών σωματιδίων ίσως δεν είναι περιοριστικοί παράγοντες για τον προσδιορισμό κατοικησιμότητας. Τα 76 mGy ετήσια που μέτρησε το Περιέργεια ισοδυναμούν με τα επίπεδα στο εσωτερικό του ISS.[45] Το 2014 από ευρήματα της δεύτερης MEPAG Επιστημονικής Αναλυτικής Ομάδας Εδικών Περιοχών, συμπεράθηκε ότι:[46]
- "Από τις μετρήσεις MSL RAD, η ιονίζουσα ακτινοβολία από γαλαξιακές κοσμικές ακτίνες στον Άρη είναι χαμηλές έως αμελητέες. Διαλείπουσες εκπομπές ηλιακών σωματιδίων ίσως αυξήσουν την ολική δόση και τον ατμοσφαιρικό ιονισμό έως το επίπεδο του εδάφους, αλλά οι εκπομπές αυτές είναι σποραδικές και διαρκούν για 2-5 ημέρες μόνο. Αυτά τα δεδομένα δεν χρησιμοποιούνται για να διακρίνουν Ειδικές Περιοχές στον Άρη." Η Ειδική Περιοχή ορίζεται ως μια περιοχή στην επιφάνεια του Άρη όπου θα επιβίωνε ένας Γήινος ζωντανός οργανισμός.
Σωρευτικά αποτελέσματα
Ακόμη και τα πιο ανθεκτικά κύτταρα δεν θα επιβίωναν από την κοσμική ακτινοβολία κοντά στην επιφάνεια του Άρη εφόσον έχει χάσει την προστατευτική μαγνητόσφαιρα και ατμόσφαιρα.[47] Μετά απο χαρτογράφηση των επιπέδων κοσμικής ακτινοβολίας σε διάφορα βάθη στον Άρη, οι ερευνητές συμπέραναν ότι στα πρώτα υπεδάφια μέτρα του πλανήτη κάθε ζωή θα πέθαινε από θανατηφόρες δόσεις της κοσμικής ακτινοβολίας.[48][49][50] Η σωρευτική ζημιά σε DNA και RNA από την κοσμική ακτινοβολία θα περιόριζε την εύρεση βιώσιμων κυττάρων σε βάθος μεγαλύτερο από 7,5 μέτρα υπό της επιφάνειας. Τα πιο ανθεκτικά σε ακτινοβολίες Γήινα βακτήρια θα επιβίωναν σε λανθάνουσα κατάσταση σπορίων για μόνο 18.000 χρόνια στην επιφάνεια. Στα 2 μέτρα —το μέγιστο βάθος που μπορεί να φτάσει το ρόβερ ExoMars— ο χρόνος επιβίωσης θα ήταν 90.000 έως μισό εκατομμύριο χρόνια, ανάλογα με τον τύπο του πετρώματος.[51]
Τα δεδομένα που συλλέχθηκαν από τον Ανιχνευτή Μετρητή Ακτινοβολίας (RAD), ένα από τα όργανα του ρόβερ Περιέργεια, δείχνουν ότι η επιφανειακή ακτινοβοία είναι 76 mGy/έτος, και ότι η "ιονίζουσα ακτινοβολία επηρεάζει έντονα τις χημικές συστάσεις και δομές, ιδιαίτερα του νερού, των αλάτων, και των ευαίσθητων στην οξειδοαναγωγή οργανικών μορίων."[52] Ανεξάρτητα από την προέλευση των Αρειανών οργανικών ενώσεων (μετεωρική, γεωλογική ή βιολογική), οι δεσμοί άνθρακα είναι επιρρεπείς σε διάσπαση και ανασχηματισμό με περιβάλλοντα στοιχεία από ιονίζουσα ακτινοβολία φορτισμένων σωματιδίων. Αυτές οι ακριβέστερες εκτιμήσεις δείχνουν ότι η πιθανότητα εύρεσης διατηρημένων οργανικών ενδείξεων ζωής είναι συνάρτηση του βάθους καθώς και των χρόνων επιβίωσης μικροβίων ή βακτηρίων σε λανθάνουσα κατάσταση υπεδάφια. Η έκθεση καταλήγει στο συμπέρασμα ότι οι in situ "επιφανειακές μετρήσεις —και υπεδάφιες εκτιμήσεις— οριοθετούν το παράθυρο διατήρησης για την Αρειανή οργανική ύλη κατόπιν εξόρυξης και έκθεσης σε ιονίζουσα ακτινοβολία σε λίγα μόνο μέτρα από την επιφάνεια."
Τον Σεπτέμβριο 2017 το NASA ανακοίνωσε για τα επίπεδα ακτινοβολίας στην επιφάνεια του Άρη ότι προσωρινά διπλασιάστηκαν εξαιτίας ενός σέλας 25 φορές φωτεινότερου από οποιοδήποτε προηγούμενο, που οφείλεται σε σημαντική και απρόσμενη ηλιακή καταιγίδα στα μέσα του μήνα.[53]
Υπεριώδης ακτινοβολία
Το 2014 μία έκθεση για την UV ακτινοβολία κατέληξε στο συμπέρασμα ότι "Το Αρειανό UV ακτινοβολούμενο περιβάλλον είναι ταχύ μικροβιοκτόνο αλλά μπορεί να εξασθενήσει με πλανητικές αμμοθύελες και να προστατευτεί πλήρως με < 1 mm ρηγόλιθου ή με άλλους οργανισμούς." Τον Ιούλιο 2017 δημοσιεύτηκε εργαστηριακή έρευνα που έδειξε ότι UV ακτινοβολημένα υπερχλωρικά προκαλούν 10,8-πλάσια αύξηση στον κυτταρικό θάνατο κατόπιν 60 δευτερολέπτων έκθεσης. Το βάθος διείσδυσης της υπεριώδους ακτινοβολίας στο έδαφος είναι σε κλίμακα εύρους υπο-χιλιοστά έως χιλιοστά και εξαρτάται από τις ιδιότητες του εδάφους.[54]
Υπερχλωρικά
Ο Αρειανός ρηγολίθος περιέχει μέγιστη ποσότητα 0,5% (w/v) υπερχλωρικά (ClO4−) που είναι τοξικά για τους περισσότερους ζωντανούς οργανισμούς,[55] αλλά μειώνουν σημαντικά το σημείο πήξης του νερού και μερικά ακραιόφιλα μπορούν να τα χρησιμοποιήσουν ως πηγή ενέργειας, οπότε εξετάζεται η επιδρασή τους στην κατοικησιμότητα.[56][57][58]
Τον Ιούλιο 2017 δημοσιεύθυκε έρευνα που έδειξε ότι η υπεριώδης ακτινοβολία προσομοίωσης του Αρειανού περιβάλλοντος κατέστησε τα υπερχλωρικά ισχυρότερα βακτηριοκτόνα. Ακόμα και λανθάνοντα σπόρια χάνουν τη βιωσιμότητά τους εντός ολίγων λεπτών. Επίσης, άλλες δύο ενώσεις της Αρειανής επιφάνειας, οξείδια του σιδήρου και υπεροξείδιο του υδρογόνου, δρουν συνεργικά με ακτινοβολημένα υπερχλωρικά αυξάνοντας τον κυτταρικό θάνατο κατά 10,8 φορές. Διαπιστώθηκε, επίσης, ότι φθαρμένα πυριτικά άλατα (χαλαζία και βασάλτη) οδηγούν στο σχηματισμό τοξικών τύπων δραστικού οξυγόνου.[59] Οι ερευνητές κατέληξαν στο συμπέρασμα ότι "η επιφάνεια του Άρη είναι θανατηφόρα για φυτικά κύτταρα και καθιστά πολλές επιφανειακές και υπεδάφιες περιοχές μη κατοικήσιμες."[60] Η έρευνα έδειξε ότι η τρέχουσα επιφάνεια είναι μη κατοικήσιμη,[61] και οι αναζητήσεις πρέπει να διεξάγονται λίγα μέτρα υπό του εδάφους όπου η ακτινοβολία είναι σχετικά μικρή.[62]
Περιοδικές κλίσεις RSL
Οι περιοδικές κλίσεις (Recurrent slope lineae, RSL) είναι χαρακτηριστικές μορφές που εμφανίζονται σε πλαγιές που αντικρίζουν τον Ήλιο κατά τις εποχές του έτους που οι τοπικές θερμοκρασίες υπερβαίνουν το σημείο τήξης του πάγου. Οι ραβδώσεις αυξάνονται την άνοιξη, διευρύνονται στα τέλη του καλοκαιριού και ξεθωριάζουν το φθινόπωρο. Η δύσκολη αιτιολόγηση μάλλον σχετίζεται με κάποιας μορφής υδατικές ροές, αν και οι ραβδώσεις καθαυτές θεωρούνται δευτερογενή αποτελέσματα και όχι μια άμεση ένδειξη για την υγρασία του ρηγολίθου. Μολονότι επιβεβαιώθηκε ότι εμπλέκεται νερό, αυτό δεν αποκλείεται να είναι υπερβολικά κρύο ή αλμυρό για να τη ζωή. Προσωρινά θεωρούνται δυνητικά κατοικήσιμες, ως "Αβέβαιες Περιοχές, που εξετάζονται ως Ειδικές Περιοχές".
Για τις "Ειδικές Περιοχές" λένε: "Δεν έχει προταθεί ενιαίο μοντέλο για την προέλευση των RSL κλίσεων που να εξηγεί όλες τις παρατηρήσεις, για τώρα πιστεύεται ότι οφείλονται στη διαρροή νερού σε > 250 Κ, με a w {\displaystyle a_{w}} (ενεργότητα νερού) άγνωστη και ίσως μεταβλητή. Ως εκ τούτου πληρούνται τα κριτήρια για Αβέβαιες Περιοχές που εξετάζονται ως Ειδικές Περιοχές. Υπάρχουν και άλλες Αρειανές μορφές με χαρακτηριστικά παρόμοια των RSL, αλλά είναι μάλλον απίθανο να σχετίζονται με υγρό νερό." Αναφέρθηκαν για πρώτη φορά το 2011.[63] Τότε υποτέθηκε ότι σχετίζονται με ροές άλμης, εφόσον όλα τα διαθέσιμα πρότυπα περιλάμβαναν κάποια μορφή ύδατος.[64][65][66][67]Η θερμοδυναμική διαθεσιμότητα του νερού (ενεργότητα νερού) περιορίζει το μικροβιακό πολλαπλασιασμό στη Γη, ιδιαίτερα σε υπεράλμυρα περιβάλλοντα, και υπάρχουν ενδείξεις ότι η ιοντική ισχύς της άλμης εμποδίζει την κατοικησιμότητα στον Άρη. Πειράματα δείχνουν ότι η υψηλή ιοντική ισχύ, που φτάνει ακραιότατα επίπεδα στον Άρη λόγω της πληθώρας δισθενών ιόντων, "καθιστά αυτά τα περιβάλλοντα μη κατοικήσιμα έστω και παρουσία βιολογικά διαθέσιμου νερού."[68]
Δέσμευση του αζώτου
Μετά τον άνθρακα, το άζωτο είναι το πιο απαραίτητο στοιχείο για τη ζωή. Για χαρτογράφηση της κατανομής του απαιτούνται μετρήσεις των νιτρικών σε εύρος από 0,1% έως 5%. Το ατμοσφαιρικό άζωτο (N2) είναι λίγο και ανεπαρκές για να υποστηρίξει τη δέσμευση του αζώτου για βιολογική ενσωμάτωση.[69] Το άζωτο με τη μορφή νιτρικών ιόντων θα μπορούσε να είναι θρεπτικό συστατικό για τη φυτική ανάπτυξη χρήσιμο σε χημικές διεργασίες. Στη Γη, τα νιτρικά άλατα συσχετίζονται με τα υπερχλωρικά σε ερημικά περιβάλλοντα, και ίσως ισχύει το ίδιο για τον Άρη. Πιστεύεται ότι στον Άρη τα νιτρικά είναι σταθερά και έχουν σχηματιστεί από το θερμικό σοκ κατόπιν πρόσκρουσης ή από αστραπές ηφαιστειακού νέφους στην αρχαιότητα.[70]
Την 24 Μαρτίου 2015, το NASA ανέφερε ότι ο Αναλυτής Αρειανών Δειγμάτων (SAM) του ρόβερ Περιέργεια ανίχνευσε νιτρικά θερμαίνοντας επιφανειακά ιζήματα. Το άζωτο στα νιτρικά βρίσκεται σε μια "σταθερή" κατάσταση, δηλαδή η οξειδωμένη μορφή του είναι κατάλληλη για χρήση από ζωντανούς οργανισμούς. Η ανακάλυψη υποστηρίζει την άποψη ότι ο αρχαίος Άρης ίσως ήταν φιλόξενος για τη ζωή.[71][72] Πιστεύεται ότι όλα τα νιτρικά στον Άρη είναι κατάλοιπα του παρελθόντος με μηδενική σύγχρονη συνεισφορά.[73] Η ποσότητα Νιτρικών κυμαίνεται από μη-ανιχνεύσιμη έως 681 ± 304 mg/kg στα δείγματα που εξετάστηκαν έως τα τέλη 2017. Τα μοντέλα μελέτης έδειξαν ότι οι παροδικές συμπυκνωμένες ταινίες νερού στην επιφάνεια θα έπρεπε να μεταφερθούν σε χαμηλότερα βάθη (≈10 μ) συμπαρασύροντας τα νιτρικά άλατα, όπου θα αναπτύσσονταν μικροοργανισμοί.[74]
Ενώ το φωσφορικό άλας, ένα χημικό συστατικό εξίσου απαραίτητο για τη ζωή, είναι άμεσα διαθέσιμο στον Άρη.[75]
Χαμηλή πίεση
Οι εκτιμήσεις για την κατοικησιμότητα της Αρειανής επιφάνειας δυσχεραίνονται από την ανεπάρκεια γνώσεων για την ανάπτυξη μικροοργανισμών στις πιέσεις του πλανήτη. Ισχύει ότι ορισμένα βακτήρια μπορούν να αναπαραχθούν σε πιέσεις έως 25 mbar, αλλά η ατμοσφαιρική πίεση του Άρη είναι πολύ μικρότερη (εύρος 1-14 mbar).[76] Σε μια άλλη μελέτη, επέλεξαν 26 στελέχη βακτηρίων με ανάκτηση από τις εγκαταστάσεις συναρμολόγησης διαστημόπλοιων, και μόνο το Serratia liquefaciens ATCC 27592 αναπτύχθηκε σε ανοξική ατμόσφαιρα πίεσης 7 mbar, 0 °C και εμπλουτισμένη σε CO2.
Υγρό νερό
Το υγρό νερό είναι αναγκαία αλλά όχι επαρκής προϋπόθεση για τη ζωή όπως την ξέρουμε, εφόσον η κατοικησιμότητα είναι συνάρτηση πληθώρας περιβαλλοντικών παραμέτρων.[77] Στην επιφάνεια του Άρη δεν μπορεί να υπάρξει υγρό νερό, παρά μόνο στα χαμηλότερα υψόμετρα για χρονική διάρκεια λεπτών ή ωρών.[78][79] Το υγρό νερό δεν εμφανίζεται στην επιφάνεια καθαυτή,[80] αλλά ίσως σχηματιστεί σε μικροσκοπικές ποσότητες γύρω από σωματίδια σκόνης σε χιόνι που ζεσταίνεται από τον Ήλιο.[81][82] Επίσης, τα αρχαία παγετώδη υπεδάφια στρώματα ίσως σταδιακά εξαχνωθούν ή λιώσουν, και καταστούν προσβάσιμα από την επιφάνεια του εδάφους μέσω σπηλιών.[83][84][85][86]
Με τοπογραφικές μελέτες ανακαλύφθηκε τεράστια ποσότητα υπεδάφιου πάγου
αρκετού για να πληρωθεί η Λίμνη Σουπίριορ (22 Νοεμβρίου 2016)[87][88][89]
Το Αρειανό νερό βρίσκεται σχεδόν αποκλειστικά με τη μορφή πάγου, που βρίσκονται στους πλανητικούς πόλους και υπεδάφια ακόμα και σε εύκρατες περιοχές.[90][91] Στην ατμόσφαιρα υπάρχει μικρή ποσότητα υδρατμών.[92] Δεν υπάρχουν σώματα υγρού νερού στην επιφάνεια του Άρη, επειδή η μέση ατμοσφαιρική πίεση είναι 600 πασκάλ —δηλαδή 0,6% της μέσης Γήινης πίεσης στο επίπεδο της θάλασσας—και επειδή η θερμοκρασία (-63°C)είναι παγετώδης. Όμως, πριν από 3,8 δισεκατομμύρια χρόνια[93] η ατμόσφαιρα ήταν πυκνότερη, η θερμοκρασία υψηλότερη, και τεράστιες ποσότητες υγρού νερού έρεαν στην επιφάνεια,[94][95][96][97] όπως και μεγάλοι ωκεανοί.[98][99][100]
Εκτιμάται ότι οι αρχέγονοι ωκεανοί του Άρη θα κάλυπταν το 36%[101] με 75% του πλανήτη.[102] Την 22 Νοεμβρίου 2016, το NASA ανέφερε ότι βρήκε μεγάλες ποσότητες υπεδάφιου πάγου στην Αρειανή περιοχή Ουτοπια Πλανιτια, όγκου ισοδύναμου με της Λίμνης Σουπίριορ.[87][88][89] Ανάλυση των Αρειανών ψαμμόλιθων με τροχιακή φασματομετρία έδειξε ότι τα Αρειανά νερά θα ήταν υπερβολικά αλμυρά και ακατάλληλα για γήινες μορφές ζωής. Η ομάδα Tosca et al. βρήκε ότι το νερό στις περιοχές που μελετήθηκαν είχε ενεργότητα aw ≤ 0,78 έως 0,86—ακατάλληλο για γήινη ζωή.[103] Τα Χαλοβακτήρια όμως επιβιώνουν σε υπεράλμυρα διαλύματα έως και το σημείο κορεσμού.[104]
Τον Ιούνιο 2000 βρέθηκαν ίχνη ροής νερού σε επιφανειακές δομές που μοιάζουν με ξηροπόταμοι.[105][106] Το 2006 δημοσιεύθηκαν φωτογραφίες του Mars Global Surveyor που δείχνουν ότι ίσως περιστασιακά ρέουν ύδατα στην επιφάνεια του Άρη. Συγκεκριμένα φαίνονται μεταβολές στις απόκρυμνες παρειές των κρατήρων και εναπόθεση ιζημάτων, ενδεικτικά πρόσφατης ροής νερού.
Στην επιστημονική κοινότητα οι συζητήσεις συνεχίζονται για τα αίτια που δημιούργησαν τις ραβδώσεις τύπου ξηροπόταμου, την ακριβή πηγή νερού και τον μηχανισμό κίνησης. Για ορισμένους οφείλονταν σε ξηρές αμμοθύελες,[107][108][109][110] για άλλους σε υγρή άλμη.[111][112][113] [114]
Τον Ιούλιο 2018, οι επιστήμονες βρήκαν μία υποπαγετώδη λίμνη στον Άρη, σε 1,5 χλμ. βάθος υπό του νότιου πόλου, και πλευρικά εκτεινόμενο σε απόσταση 20 χλμ., και αποτελεί το πρώτο γνωστό σταθερό σώμα νερού στον πλανήτη.[115][116][117][118] Η λίμνη εντοπίστηκε από το ραντάρ MARSIS του τροχιακού Mars Express και η συλλογή των δεδομένων έγινε την περίοδο Μαΐος 2012 - Δεκέμβριος 2015.[119] Το επίκεντρο της λίμνης βρίσκεται σε συντεταγμένες 193°E, 81°S, μια επίπεδη επιφάνεια χωρίς ιδιαίτερα τοπογραφικά χαρακτηριστικά που περιβάλλεται από υψηλότερα εδάφη εκτός από την ανατολική πλευρά όπου υπάρχει κατάθλιψη.
Πυριτικά
Τον Μάιο 2007, το ρόβερ Σπίριτ διατάραξε τα εδάφη με τη μη λειτουργική ρόδα του και έφερε στην επιφάνεια μια περιοχή περιέχουσα 90% διοξείδια του πυριτίου.[120] Το περιστατικό θυμίζει καυτό νερό πηγής ή ατμό καθώς έρχονται σε επαφή με ηφαιστειακά πετρώματα. Για τους επιστήμονες είναι ενδεικτικά παλαιού περιβάλλοντος που ίσως ευνοούσε τη μικροβιακή ζωή και θεωρούν ότι τα πυριτικά ίσως προέκυψαν από αλληλεπίδραση του εδάφους με όξινα αέρια, τα οποία προέρχονταν από ηφαιστειακή δραστηριότητα παρουσία νερού.[121]
Με βάση τις αναλογίες με τη Γη, τα Αρειανά υδροθερμικά συστήματα θα προσφέρονταν ικανοποιητικά για τη δυνατότητα συντήρησης οργανικών και ανόργανων βιολογικών ευρημάτων.[122][123][124] Για αυτό, τα υδροθερμικά κοιτάσματα θεωρούνται σημαντικοί στόχοι για την εξερεύνηση απολιθωμάτων της αρχαίας Αρειανής ζωής.[125][126][127]
Διαδραστικός χάρτης του Άρη
Διαδραστικός χάρτης της Αρειανής τοπογραφίας. Τοποθετήστε το δείκτη του ποντικιού πάνω σε μία από τις >25 διακριτές γεωγραφικές περιοχές για να δείτε την ονομασία της, και κάντε κλικ για να μεταβείτε στον σύνδεσμο. Ο χρωματισμός του βασικού χάρτη ενδεικνύει σχετικά υψόμετρα, βάσει δεδομένων του μετρητή υψομέτρων με λέιζερ του τροχιακού Mars Global Surveyor του NASA. Τα κόκκινα και ροζ είναι μεγαλύτερα υψόμετρα (+3 χλμ έως +8 χλμ)· τα κίτρινα είναι 0 χλμ· τα πράσινα και μπλε είναι χαμηλότερα υψόμετρα (έως -8 χλμ). Τα λευκά (>+12 χλμ) και καφετιά (>+8 χλμ) είναι τα μεγαλύτερα υψόμετρα. Οι άξονες είναι Πλάτος and Μήκος· Οι Πόλοι δε φαίνονται.
Ηλιακό Σύστημα